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Abstract--The flow of a non-dilute fluid suspension is considered in which the dispersed phase consists of 
particles or droplets of different sizes. A phenomenological two-phase flow theory is formulated for both 
continuous and discrete distributions of particle sizes and illustrated by considering the batch settling of 
such a mixture. The volume fractions and particle distribution functions are determined, as well as the 
composition of the sedimentary layer. 

1. INTRODUCTION 

We consider here the motion of a fluid suspension in which the dispersed phase consists of 
droplets or particles of different sizes. The volume fraction of this phase is assumed sufficiently 
large for the hindering effects of the droplets on each other to be important. (Droplets and 
particles are used interchangeably for the time being.) The objective is a theory to determine 
the motion and the distribution of particle sizes. 

Two-phase flows are intrinsic to many technological operations--sedimentation, fluidization, 
boiling, material processing, separation, and combustion, to name a few. Knowledge about 
these highly complex processes has come mainly from observation and experimentation, but in 
recent years theoreticians, aided by large computers, have developed elaborate models of such 
phenomena. Although theory is to an extent derived from correct conservation laws by various 
averaging procedures (Ishii 1975, Delhaye & Achard 1976), empirical correlations and 
"reasonable" hypotheses must be employed for the physics of non-dilute suspensions to be 
described properly. At the very least, relationships are always required for the stress and rate 
of strain in each phase and the momentum and the drag interactions between phases. The final 
system of equations, in number and structure, is formidable. Application, of necessity, is often 
made at once to the practical problems at hand using extensive computer programs (Harlow & 
Amsden 1975, Rivard & Torrey 1977), although the basic theoretical framework is not well 
understood. There is obviously need to evaluate theory in almost all respects and the solution 
of simple, "idealized" problems which can be subjected to experimental verification serves this 
purpose best. The settling of particles and droplets in a force field is a problem of this type 
which for these reasons has been widely studied. The present work which adds to this body of 
research deals first with a suspension of spherical particles of n different sizes (but having the 
same material density). The focus here is on a reasonable drag law and its implications; the 
effects of apparent mass, acceleration, shear lift etc. (Zuber 1964) will be examined in detail 
later. The equations for a continuous distribution are obtained by passing to the limit as the 
number n of different particle sizes becomes infinite. Finally, both formulations are used to 
solve anew the problem of the gravitational settling of a suspension (Kynch 1962, Smith 1965,1966, 
Lockett & Al-Habbooby 1974). 

2. FORMULATION FOR A DISCRETE SIZE DISTRIBUTION 
A droplet (or particle) in our non-dilute suspension is assumed to be a small sphere whose 

diameter is one of only n possibilities. Let A,, AI be the smallest and largest droplet radii, then 
the sizes are ordered as follows: 

MF VoL 8, No. 6.-.-B 
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If a continuous size distribution were divided into n intervals, Xk would be identified as the 
average radius for particles in the kth diameter range. 

The size of an irregularly shaped particle may be chosen as the radius of an equivalent sphere 
which in the same circumstances moves in the same way. Although such a measure might 
depend on the orientation and position of the droplet, size is considered fixed in this analysis. In 
addition, there is to be no mass exchange between phases, no coalescence of droplets and all 
fluids are incompressible. 

No attempt is made to develop theory from the fundamental standpoint of statistical 
mechanics or by a systematic extension from dilute conditions, but the distribution or density 
of droplets as a function of position and time is of prime interest. For a finite number of distinct 
sizes, the distribution is described by the partial volume fractions ak(r, t), of spherical droplets 
of radius ;~k. A continuous range of particle diameters necessitates a volume distribution 
4~(r, t;X), to be defined in the next section. In either case, the effects of collisions and 
interactions of the droplets and particles are described solely in gross phenomenological terms, 
as for example a drag force that is dependent on volume fractions, position and time. 

Identical droplets of the same radius can be viewed as a separate fluid phase. In this light, the 
suspension having n different particle sizes consists of n incompressible, dispersed phases which 
are distinguished by particle diameter only. 

The equations of motion of such a multiphase suspension of incompressible fluids may be 
obtained by local instant time-averaging procedures, Delhaye & Achard (1976), Ishii (1975). The 
generalization from two to an n-phase mixture is implicit in these references. For incom- 
pressible fluids and under the conditions assumed, a complete description of the flow is 
obtained from the mass and momentum conservation laws: 

0 
~akPk + V" a~okVk = 0, k = 0 . . . . . .  n [2.1] 

0 
"~OlkJ)k V k d" V"  OlkPk Vk Vk = -- Olk VPk + V"  Otk~ k "~ OtkPkg + Mk. [2.2] 

The continuous fluid phase is designated by index k = 0 when this is appropriate, but more 
commonly by subscript c as for example, pc = P0. 

The phase averaged variables, defined precisely in Ishii (1975), are velocity, Vk; volume 
fraction, '~k; stress, ~k; partial pressure, Pk; inteffacial drag force, ME; body force, g. In 
particular, po =pc and Pk = Pr~ the density of the material of the dispersed phase for k = 
1 . . . . .  , n .  

Formulas for ~k, Mk and Pk must reflect the main effects of droplet interactions or particle 
collisions. We adopt a phenomenological viewpoint and use hypotheses which seem reasonable 
and consistent with the limited evidence available. 

The pressure inside a droplet is assumed to be related to that just outside by the capillary law 

Pk = P c  "t- 2cr/;~k, k = 1 . . . . .  n. [2.3] 

where or, the surface tension is a constant. This approximation has been seriously questioned in 
some circumstances (Stuhmiller 1977, Banerjee 1980), but it seems adequate for the present 
purposes nonetheless. 

The drag force on the dispersed phase k is assumed to be of the form 

Mk = Kl.~cD(Ct)~(k Vc -- Vk), [2.41 

and the conservation of mixture momentum requires that 
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Here 

Mc + ~ ME = O. [2.5] 
k=l 

a =aD = ~ aE = 1 - a ~ ,  [2.6] 
k=! 

is the total volume fraction of the dispersed phase,/~c is the viscosity of the continuous phase, 
and xD(a) is an empirical factor that describes the viscosity of the mixture. (In particular, 
D(0) -= 1, and x = 9/2 for a fluid/particle suspension.) 

Although much more elaborate assumptions could describe the effects of apparent mass, 
acceleration etc., [2.4] for the drag is the primary means in this paper of accounting for 
collisions and interactions in a non-dilute suspension. The magnitude of the drag exerted on the 
dispersed phase k, is assumed to depend only on the instantaneous gross properties of the 
surrounding suspension measured by the total particulate volume fraction a, and fluid velocity 
of the continuous media, vo and, of course, on the size, number and velocity of the droplets of 
radius AE. This approximation reduces to accepted formulas for a two-phase flow as well as the 
appropriate single particle limit of a very dilute dispersion. The experimental data of Smith (1965, 
1966) confirms that [2.4] is an accurate approximation at least in most circumstances of slow 
settling. 

The entire dispersed phase is characterized by averaged variables that are calculated from the 
individual species values as follows: 

*D = (¢k) = "kOk. 
= 

[2.7] 

For example, 

VD=(VE), pD =(pk); [2.8] 

from [2.3], it follows that 

pD = p c +  2 . ( ~ ) .  [2.9] 

The total drag force on the dispersed phase is then 

where 

k=, ~ ME= K~*aD(r')(~'~- ('~kk)) [2.10] 

' (3,) a-~ = • [2.11] 

An equal but opposite force must be exerted on the continuous phase, so that 

Vc Vk 
[2.12] 

Since a and Ok( = po) are constants, [2.1] and [2.2] can be written as 

- • a k  +V'Qk¥ k = 0 [2.13] 
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0 ct k 
0 ~ k  ~?Vk + V~" VV'k) = -- ~kVp, + V" ~k~k + Ooakg + 'c~<D('X)Ak--~v~ - vk) ,  [2.14] 

for k = 1 . . . .  , n. 
Since a~ = 1 - a, 

expressed by 
mass and momentum conservation in the continuous fluid phase are 

-0~a  + V . ( 1 - a ) v ¢  = 0 ,  [2.15] 

(0 (b()) 
pc(1 - a) ~vc + Vc" VVc) = - (1 - a)Vpc + V. (1 - a)Ir<_ + pc(1 - a)g - rl~<aD(a) vc _ ~kVk . 

[2.16] 

Finally, the equations, for the total dispersed phase are obtained by summation over index k 

0 
~-a +V" otvo = 0, [2.17] 

0 + Vc Vk [2.18] 

where 

~ . ~  = ~D + vov~, - (vkvk) [2.19] 

is the effective stress. 
The extent to which the equations for the entire dispersed phase are dependent on particle 

sizes is largely measured by the difference 

I vo  / v k \ l  
~- \~ /1  

In a two-phase mixture, k = 1, al = ao, vD = vl, a 2 = A12, F o  E = ~D; preceding system then 
reduces to the form given by Ishii (1975). 

Constitutive laws for the stress tensors must still be supplied and each of these could be of 
the usual form 

,r = ~(Vv + (Vv) +) + 8(V "v)/ [2.20] 

where the coefficients are empirical functions of mixture properties. 
Particles are to be viewed in this formulation as the conceptual limit of droplets when the 

bulk viscosity of the dispersed liquid becomes infinite and the surface tension approaches zero 
(as does the effective stress tensor of the discontinuous phase given in the preceding 
equation). 

3. FORMULATION FOR A C O N T I N U O U S  SIZE D I S T R I B U T I O N  

Let $(r, t;A) be the volume distribution of spherical droplets of radius A at point r and time t. 
In other words, $(r, t;A)dr dA is the fraction of the volume dr, centered at r at time t, which is 
filled by droplets with radii in the interval A and A +dA. If n(r, t;A) is the number density of 
droplets, i.e. the number per unit volume, per unit size, then 

~(r, t;A) = -~EA3n(r, t;A). 
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(These definitions are appropriate generalizations of those introduced by Bergner 1957.) 
The volume fraction of the dispersed phase is then 

a(r, t) = 6(r, t;~) d;~ [3.1] 
s 

where ;,i and ;~s are the largest and smallest droplet radii in the suspension. 
If the entire size range (;~s, ~) were approximated by n equal intervals of length A;, each 

having particles of the same diameter then the volume fraction of particles of radius Xk is 

Aak ~ ~b(r, t;~k)A~. [3.2] 

Equations [2.13] and [2.14] would then apply to each incremental size interval by replacing ak 
by Aak. In the limit, as AA 40 ,  7r~ vk, Pk tend to ~(r, t; A), v(r, t; A), p(r, t; A) and the governing 
equations become 

-~t +V. ~v=O,  [3.31 

pt~b(o~v + v" V v ) = -  SVp¢ + V ' d ~ + p ~ g + K t ~ c D ( c t ) ~ V c - V ) ,  [3.4] 

with 

p = pc + 2alx. [3.5] 

Since integration with respect to )t replaces summation, the equations for the continuous phase 
are 

Oa 
- 0--t" + V .  (1 - a )v ,  = 0 [3.6] 

pc(1 - a)(~v~ + vc" Vv¢) = -  (1 - a)Vp¢ + V. (1 - a)~¢ + p,(1 - a)g 

v~ 1 ~ t 4 , v  - dX),  [3.7] 

where the average particle radius a is defined by 

1 1 f~l~b dX 
= [3 .81  

The total dispersed phase is now characterized by integrated averages as well 

v°(r't) l 1 f x '  I v ( r ' t ;A) ]  
po(r, t) ] = a(r, t)J~, ~(r, t;X) ~p(r, t;X) [ dX, [3.9] 
w o(r, t) [~(r, t;X) J 

and the equations of motion corresponding to [2.17] and [2.18] are 

~t a avo = 0, [3.10] + V. 

0 + Vc 1 ~lOv 
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Alternatively, the theory for a suspension of distinct particles sizes which constitute separate 
phases, can be recovered from the foregoing by using the distribution function 

-± 4~(r ,  t ; ; O  - a k ( r ,  t ) 8 ( ; ,  - ;~). 
k=l 

It follows for example that 

Since 

and 

a(r, t )= t;;O d~ = ak(r, t). 
k = l  

~" "~k + 

ak(r, t )= .l~/k- 4,(r, t;A)dX 

I"  kk + 

ak(r, t)vk(r, t) = J~k- v(r, t;X)~(r, t:~)d;~ 

integration of [3.3] over kk- to AE+ yields [2.13] once again. The other equations follow by 
similar arguments. 

4. S E D I M E N T A T I O N  THEORY 

The multi-phase flow theory developed in the preceding sections is illustrated by application 
to the slow, batch settling of a suspension, Kynch (1952). An initial, uniform suspension of particles 
(or droplets) of different sizes settles in a tube of finite length. The transient motion of both phases 
as well as the distribution of particles in the fluid and in the accumulating sediment are to be 
determined. For droplets, the "sediment" corresponds to a coalesced bulk phase with a = 1. 

Smith (1965, 1966) and Lockett & AI-Habbooby (1973, 1974) considered the settling of a 
discrete distribution of particle sizes by employing equations equivalent to those of diffusion 
theory in which the drift velocity is empirically defined. The latter authors obtained very good 
agreement between their theory and experiment for a mixture with particles of two different 
sizes. The use of the two-phase flow equations in these simple cases yields essentially similar 
results although certain former "assumptions" are now "consequences" in a more fundamental 
approach. The theory is also in closer agreement with the data of Smith 0966) on a mixture of 
four particle sizes than his analysis which was based on a fluid envelope model. 

Since the motion is slow, which means that the characteristic settling velocity 

W = g(pD - pc)A~ 2 [4.1] 
Kp, c 

is small, inertial terms in the momentum equation may be neglected. Viscous stresses and 
sidewall effects are also assumed negligible in which case the problem reduces to a one- 
dimensional fluid motion with 

v = w~, vc = wc~ and g = - g ~ .  

(The general role and effects of the stress tensor will be discussed elsewhere.) 
Let H be the height of the container, Ap = PD -- Pc > O, and define dimensionless variables by 
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the following transformations: z..~ Hz; w ~  Ww; t--*(HIW)t; pc ~pcgHp~; d~--*~lAt; A ~ X,A 
with e = Ap/p~. The reduced equations of motion which correspond to [3.31, [3.41 are then 

-~t + 0~(*w) = 0, [4.2] 

* [~z~ + (1 + e ) - e D ( a ) ( - ~ ) ]  = 0 ,  [4.3] 

and 

I/ ~, = 4~(r, t ;~ )  dX.  [4.41 
s 

The equations for the continuous phase, [3.6] and [3.7], are 

a 
OaOt t'-~(z l - a)Wc = 0 [4.51 

OD: ~ad~(a) /wc I f lw,~., , '~ 
-~-z~ + 1 ~- 1 _--~-~\a-~-  ~j~ --~ u^} = 0 [4.61 

with 

1 1 f l ~ k  . , .  
: g j ~  u^. [4.71 

The dimensionless versions of [3.10] and [3.11] for the entire dispersed phase aro: 

The initial conditions are 

Oa + o~aw D = 0 -g 

°Po + (1 + d )=0 
0Z 

w = 0 = we, q,(z, 0;x) = O(x), a(z, O) = 

[4.8] 

[4.91 

The analogous equations for a dispersed phase that consists of spherical particles of n 
different sizes are obtained, when required, by using the distribution functions 

N 

~(z, t ;X)=~ak(Z ,  t)8(X--Xk) [4.101 
k=l 

as described in the last section. (Note again that the radii are ordered in the sequence, 
0 < A, = X, < )t,-r • • < A1 = 1.) For example, integration of [4.3] over the range XE- to XE + yields 

w = 0 =  wc on  z = 1 and z = 0 .  

where O(X) is a prescribed function which is zero for X < X, or ~ > 1 and ti is the volume 
fraction of the uniform suspension. It should be noted that unlike other analyses, our theory 
applies to any initial, spatially dependent, distribution of particle sizes. For simplicity, however, 
only an initially uniform suspension is considered here. 

The boundary conditions on the top and bottom surfaces of the container are: 
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W c - -  W k ak(~z + ( l + , , - , D ( a , ( ~ ) )  = 0  

where by definition w(z, t;Xk) = wk(z, t). 
The solution of this problem involves four different regions of flow, figure 1, only one of 

which presents any difficulty. As the suspension settles, there will be a clarified zone, labelled 4 
in the figure, bounded by the top plate z = 1 and the instantaneous position of the smallest and 
slowest particle that was originally in contact with this surface. A growing layer of compacted 
sediment on the bottom plate occupies region 2. The sediment has a maximum volume fraction 
a u  < 1 but for most illustrative purposes a u  = 1 is satisfactory. (The value aM = 1 might be 
especially appropriate for droplets which coalesce upon compaction; a M -  0.6 is typical of 
particle sediments.) 

A kinematic shock separates the sediment from region 1 where settling occurs as if there 
were no end plates and all dependent variables are just constants. Between regions 1 and 4, 
there is a transitional sector 3 where the volume fractions are variable. Separation is completed 
when regions 2 and 4 first touch. 

Certain general relationships can be obtained by manipulating the equations of motion. 
Integration of the expression obtained by adding of [4.5] and [4.8] yields 

(1 - a)w¢ + awo = 0 [4 .11 ]  

which simply states that the net volume flux is always zero. From the definition 

wo = ~bw dA, 
s 

it follows that 

we= 1-a  ~wdA.  [4.12] 
s 

a=O [ 

[ I ~ : a m 

z 0. 

Figure 1. Different regions in the settling of a suspension. 1-uuiform settling for a constant volume fraction; 
2-the sediment layer, of uniform composition in a, of varying composition in b, both having a maximum 
volume fraction aM < 1; 3-transition fan where the volume fraction varies; d-clarified fluid of the con- 

tinuous phase with a -- O. Separation is completed at point * 
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The result of subtracting [4.6] from [4.9] is 

w a2 f l~wd)t  ( 1 - a ) a  2. 
c - ~ - L - ;  r = o ~ )  ' [4.131 

the substitution of [4.13] into [4.6] yields 

aP----s-~ = - 1 - E a ,  [4 .14]  
OZ 

for the pressure. This formula and [4.3] imply that 

wc - w = (1 - a)X21D(a). [4.15] 

Replacement of w in [4.12] leads to the important relationship 

1 - - 0 ~  "1 
we(z, t )= D---~jx X26(z, t;)t)d)t [4.16] 

and it follows that 

t 1 a~2 el 
w o ( z ,  t )  ~ - J 2 = ~ J x ) ~  &(z,t;~)d~, [4.171 

1 
D_~k),l - a / 2 ~" t;~,) d)t) w ( z ,  t ; x )  = - - j ~  x 2 ~ ( z ,  [4.181 @ 

All velocities are now given explicitly in terms of the particle distribution function, ~, which 
must be obtained by solving [4.2] with w given above. This is a peculiar partial differential 
equation because it involves integrations with respect to a parameter. 

Equation [4.18] shows that not every particle settles or moves downward all of the time. As 
the larger particles sink, the surrounding fluid moves upward to maintain zero net volume 
transport. This upward flow may be sufficient to drag the smaller particles with it, until they 
reach a position or conditions where the gravitational pull once again dominates. In particular, 
particles with radii 

)t 2 < a~ 2 = ~112~ d~, [4.19] 
J~'s 

are dragged upward before finally falling to the sediment. 

5. SETTLING OF A SUSPENSION 
We now determine the motion and distribution of particles in each of the flow regions shown 

in figure 1. 
The main region of settling, area 1 of the figure, corresponds to that in an infinitely long 

container with zero volume transport. The other regions merely adapt this flow to meet the end 
wall conditions. 

The motion in zone 1 is determined from [4.16]-[4.18] by observing that there 

6 ( z ,  t ; x )  = O ( x ) .  

The particle distribution function in this region is the initial distribution which corresponds to a 
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uniform mixture of constant volume fraction ~. Therefore, the velocities are also constants: 

1 - & [  1 
• c = D-~A, x2~(x) dX, [5.1] 

l - d _  
~'D = -- ~ " Wc, [5.2] 

~, = x z ( 1 -  ~) 
D(s------S- + ~c [5.3] 

In the corresponding discrete case, &t is known and 

II n 

~,(x) = ~E,ikS(X - X~), ~ = 5~ ~k. [5.41 
k=l k=l 

Therefore 

(I - ci)~,. 2 - 
~'~ = n t -~  2.,^k ak, [5.5] 

~ ' ~ . c t  I k = l  

and 

~O = -- (1 -- Ci)ffpc, [5.6] 
a 

(1 - a ) .  2 + 
ff~k = - D(~) ^k ff~c. [5.7] 

The falling particles are brought to rest across a kinematic shock that bounds the sedimen- 
tary layer, region 2, whose thickness increases with time. The shock condition is derived from 
[4.2]. 

If U is the velocity of a kinematic shock and a particle crosses the discontinuity from the 
front (or plus side) to the back (or minus side) then the conservation of mass requires that 

[ ( w -  u ) ~ ] _  + = (w + -  u ) ~  + -  ( w - -  u ) ~ - =  o .  [5.8] 

Only one such shock is required to bring all  particles to rest in the sediment and the velocity 
U is independent of )t. Since the sediment is characterized by the values 

a -  = au, w- = 0, [5.9] 

where 

c~ -+ = d)t, [5.101 
s 

[5.8] can be rearranged and integrated to yield 

U = - wo+a + l (au  - a +). [5.11] 

The shock speed is exactly that for conventional two-phase flow theory in which the dispersed 
phase is defined by an average particle size. 

The distribution of particles in the sediment is determined from [5.8] by solving for 4'- since 
all other quantities are known. For the discrete suspension, this calculation yields 

ak-  = ak+(U - wk+) /U.  [5.12] 
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(For an emulsion, the "sedimentary" layer is taken to be a condensation of the dispersed phase 
with a - 1 as would be the case if droplet coalescence occurs.) Equations [5.11] and [5.12] hold 
in general across the sediment boundary whether the conditions in front of the shock are 
constant or variable. 

The clarified continuous fluid phase, region 4 of figure 1, is bounded by the top plate and the 
locus of the smallest particle that was originally in contact with this surface. The trajectory of 
this particle is the solution of 

d-Az = w(z ,  t;X,) 
dt 

with z = 1 at t =0,  and w is given by [4.18]. However, the explicit formula for the particle 
velocity requires the determination of the distribution function in the last remaining zone 3, the 
interval between the largest and the smallest particles that were both at the end plate z = 1, at 
time zero. 

There are some significant differences between the discrete and continuous particle dis- 
tributions in sector 3 (although not necessarily in the limit at n ~ oo). For example, a distribution 
of n distinct particle sizes implies n kinematic shocks which are essentially trajectories of the 
"last" particles of each type. Discontinuities can occur with a continuous size distribution as 
well but none develop in this particular region (in this problem). 

The discrete case is in fact the simpler of the two to treat since between each pair of shocks 
the flow is uniform and constant. For this reason, it is discussed first but with minimal detail 
because the analysis is quite similar to that of Smith (1966) whose equations were based on a 
spherical fluid envelope model. 

The transition region 3 consists of a series of kinematic shocks emanating from the point 
z = 1, t =0  and separated by sectors of constant conditions. The shock moving with constant 
velocity UE is the trajectory of the particle of radius Ak initially at z = 1. Behind this front, 
which is also a particle path, ak = ak- = 0. 

The transition zone resembles a fan made up of distinct sectors which are labelled 
sequentially. Let the region 

1+ Umt < z  < 1 + Um+~t 

(where Us are all negative) be designated sector m + I; sector 1 is then region 1 of figure 1. 
Within the fan, the distribution function is 

4, = ~ ak(m)8(A - Xk), m -- I ..... n [5.13] 
k=l 

where 

ak(m)--O for k<m. [5.14] 

Here m = n + 1 is actually region 4 of clarified fluid. The volume fractions and velocities in 
sector m are obtained from [5.5] to [5.7]: 

n 

a(m) = ~aj(m) [5.15] 
j=! 

1 -  a ( m ) ~ , .  ~ . . 
[ 5 .16 ]  
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wo(m) = 1 -~m)m).wc(m) [5.17] 

1 - a(m)~ 2± we(m) [5.18] wE(m) = -- D(a(m)),,E T 

Since wE(m) is of no importance when a~(m) -- 0, for notational convenience, it too is assigned 
a zero value for k < m. 

With Um= U(m) the kinematic shock condition [5.8] across the front, z = 1 + U(m)t may be 
written as 

ak(m + 1)(wE(m + 1 ) -  U(m)) = ak(m)(wE(m)- U(m)) , [5.19] 

where ak(m + 1) = at-, ak(m) = aE +, etc. For k = m, the preceding formula implies that 

U(m) = win(m), [5.20] 

since am(m + 1)---0, by [5.14]. Thus the shock velocity is the particle velocity of the "last" 

particle of that size. 
To find the solution we start with the known values in region 1 obtained from [5.5], [5.7] and 

[5.11]: 
ak(1) = ~E, wE(l) = ~ ,  U,)--  wl(1), etc. [5.21] 

The shock condition [5.19] and [5.18] provide a nonlinear set of algebraic equations for the 
values of ak(2), which determine wE(2), we(2), wo(2), etc. The procedure is then repeated until 
region 4 of clarified fluid is reached after crossing the last shock, that is, the locus of the 

smallest particle of the system. 
The system of equations is solved at every stage by iteration; there are no special 

difficulties. The results for a suspension of 4 particle sizes with cik= ~/4, ,~ = 0.2, and As = 0.4, 
are given in table 1, for the drag law 

Ot )-2 
D ( a ) =  1 - ~--~u and aM = 0.6 [5.22] 

We consider next the solution for a continuous distribution of particle sizes. In this case, 
the distribution function qb (see [4.2] et seq.) must be determined in the transition zone by 

solving 

~tt + ~z¢~W = O [5.23] 

Table 1. Volume fractions a~(m), and velo- 
cities wE(m) for a suspension with four particle 
sizes (1, 0.8, 0.6, 0.4) and the drag law D(a)= 

(1 - 5/3a) -2 

m• 1 

I -0.3172 
0.0500 

2 0 

3 0 

4 0 

2 3 4 

- 0.1892 - 0.0896 - 0.0185 
0.0500 0.0500 0.0500 

-0.2272 -0.1147 -0.0344 
0.0711 0.0562 0.0528 

0 -0.1548 -0.0577 
0.0873 0.0601 

0 0 -0 .0931 
0.0945 



ON HINDERED SETTLING OF PARTICLES OF DIFFERENT SIZES 599 

with 

subject to the condition 

o n  

1 - a 2 ' d A )  [5.24] 

4, = ¢(x)  [5.25] 

fo' f,' ) I - z =  w(z,t;1)dt=--D- ~ I -  X2¢)(X)dX t. [5.26] 

The last equation describes the trajectory of the largest particle which was initially at the top 
plate z--1. Were it not for the integration with respect to ), the solution would be a 
straightforward application of the method of characteristics. As it stands, the problem is a 
rather peculiar combination of derivatives and integrals. However, the solution can be found by 
introducing a similarity variable. Let 

I--Z 
~I= t [5.27] 

and assume that 

so that 

d,(z, t;x) = ~O);X) [5.28] 

- w(z, t;X) = a)(Tl;~t) = A s -  (~);A)dA , [5.29] 

(x = ~b('0 ;~,) d~t. [5.30] 
s 

Equation [5.23] may then be written as 

d0 d(o 
(o, - - , ) ~  + 7 - - 0  = 0 [5.31] 

tiT1 

with 

= O(x) [5.32] 

on the ray 

1 1 - ( i  -fro dA). [5.33] ~ = ~(~;I)= D---~( x~o 
s 

For each ~, the problem must be solved in the sector 

oJ(~ ;)t) - ~(A) < 7) - -~ = ~o(@;I). [5.34] 

The differential equation has a singular point at ~(A) which represents the locus of the 
particle of radius ), falling from the top plate. 

In order to calculate the distribution function, [5.31] is first converted to an integral equation 
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f ~daJ(~';)t) d~" 
S( -o ;X)=¢(a )exp j~  ~-~ ~ - o ( ~ ; A )  [5.35] 

where ~o(~; A) is given above. The solution may be obtained by iteration and a successful algorithm 
is given in appendix A. 

The results of one iteration are the approximate formulas 

and 

~(n ;x) = ~(x)n(V(n)- x), 

a(rl) = rvJx ~¢(A) dX, 

vn 
o,(~ ;x) ----~(x2-  fx ' A2(1)(A) dX), 

wc-- ~ f f ' x 2 * ( x )  dx, 

in the sector defined by [5.34]. H(x) is the Heaviside function. 

[5.36] 

[5.37] 

[5.381 

[5.391 

6. DISCUSSION 

To illustrate theory, the simple settling problem of a spatially homogeneous mixture has 
been solved for both discrete and continuous distributions of particle and droplet sizes. In the 
former case, a discretization of the distribution function is equivalent to assuming that diameter 
of a particle must be one of only a finite number of possibilities. Collectively, the identical 
particles of different sizes constitute separate phases or species. The individual or partial 
volume fractions can then be calculated directly in every region of figure 1. In particular 
transition zone 3 consists of kinematic shocks separated by sectors where constant conditions 
prevail. 

Figure 2 illustrates the settling process for a uniform suspension which consists of four 

6.. 

t 

4. 

4 

a 2 

Figure 2. Sedimentation of a suspension of four particle sizes (1, 0.8, 0.6, 0.4) and the drag law 
D = (! - [5/3]a) -2. Values of the volume fractions in each region (at; a2, a3, a4), a, are: 1-(0.05, 0.05, 0.05, 
0.05), 0.2; 2a-(0.257, 0.173, 0.108, 0.062), 0.6; 2b-(0.0, 0.349, 0.167, 0.084), 0.06; 2c-(0.0, 0.0, 0.448, 0.152), 
0.6; 2d-(0.0, 0.0, 0.0, 0.6), 0.6; 3a-(0.0, 0.071, 0.056, 0,053), 0.180; 3b-(0.0, 0.0, 0.087, 0.060), 0.147; 3c-(0.0, 

0.0, 0.0, 0.095), 0.095; 4-a = O. 
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I.C 

.8 

% 

.6 

• . 6  . 8  ,,~ I~0 

Figure 3. A comparison of discrete and continuous approximations for the volume fraction a in the 
transition fan based on 4 and 7 particle size species and the first two iterations. Initially ~i = 0.2; 

As --- 0.4 and D(a)  = 1 - a. 

particle sizes (~,~, ~(2, ~t3, ~(4) = (1,0.8, 0.6,0.4) each diameter represented by an initial volume 
fraction of 0.05 (so that ~i = 0.2). The drag law is D(a )=  (1 -  (5/3)a) -2 which is typical of 
droplets and particles, Ishii & Chawla (1979). The velocities and volume fractions in this case 
are recorded in table 1. The calculation is readily made for any drag law (or any initial, spatially 
dependent distribution). 

The velocity and volume fraction of every size species generally increases across each of 
the shocks of the transition fan, excepting, of course, that discontinuity which is the final 
trajectory of particles of that diameter. However, the total volume fraction a of the dispersed 
phase decreases by steps to the value zero in the clarified fluid. Increasing the drag gives a 
slower rate of descent as might be expected. 

The results of the two phase flow theory on mixtures with two particle species essentially 
reproduce those of Lockett & A1-Habbooby (1973) (who used an equivalent of a diffusion 
theory) and are in very good agreement with the data of Smith (1965). The theoretical results 
for a mixture of four size species also agree closely with the experimental data cited by Smith 
(1966); comparison with experiments on continuous distributions is yet to be made. 

The approximate solution for a continuous distribution of particle sizes is based on the 
iteration formulas in the appendix. For an initial distribution which is a constant and the analog 
of one of the discrete cases cited above, equations [AI 1] are obtained at the first iteration for 
variables in the transition sector. In particular, 

a(,)) = ~ ( V ( , 7 ) -  ~,) 

i.e. at this stage the volume fraction is a linear function of ~/~. A second iteration leads to a 
more complicated formula, [A15]. 

With D(a )=  1 -  a, the first two iterations for the volume fraction a and the discrete 
approximations corresponding to four and seven particle sizes are compared in figure 3. The trend 
seems to indicate apparent convergence of both methods. 

The calculations based on discrete approximations of the distribution function are the 
easiest to implement and should be very accurate if the number of particle species is 
appropriately large, say seven or more. However, the model with a continuous distribution of 
particle sizes may have advantages in the less than ideal circumstances of most two phase flow 
applications. 
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APPENDIX A 

The problem for a continuous distribution of particle sizes is embodied in the integral 
equation [5.35]. The solution is obtained by iteration. 

Assume ¢Jt~ (~;;t) the nth iterant is known. Calculate 

a(.) = ~(.) dX [A1] 
A s 

l--iX(a)/ 2 flA2~b(n)dA~" 
to~.)(7/;A) = D(a(n))~X - "a, 

and 

Determine next by separate iterations in 

the approximate boundaries of the transition fan 

At this stage, the velocities of the continuous and discrete phases are 

- l_a(;) )WD~.) = - 1--ZY--~ r '  .,, wq,) - D ( a ( , ) ) l  A2~(.) dA. 

The next iterant is 

[A2] 

[A3] 

[A4] 

[A5] 

~ ( ~  ) = JP = 6/(1 - A~) [A10] 

,,,(O;a) = ~ < n < ~ = ,o(~;1). 

For an initial distribution function which is a constant, . 

in the sector defined by 

~(.) ~ ~ -  ~o(.) [A6] 

and the procedure starts anew. The exact solution is supposedly obtained in the limit lira #(.) 

but as a practical matter only one or two iterations seem possible. 
The results of one iteration, with ~(o) - 0, are the approximate formulas 

~b(,q ;h) = ~(h)H(X/(~) - ~) [A7] 

and 

I? a(~)  = ~(A) dA [A8] 

1 - a  2 ff~x2¢(X)dX) 

= 1 - a fV '~2¢(~ , )  dX [Ag] 
Wc D(a)J~ .  
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we have 

for 

where 

and 

~(V(n)- x,) 1 Ot 

l - a t  2 ~ 3t2 3.\1' 

1 , a ~ ,  m . 3 ,  [ 
WC ---- D ( a )  ~ 1  - ^ '  )" J 

If D ( a )  = 1 - a in this particular case, the second iteration is: 

~(z)(~l;X) = (~ exp f l  dr°O) de 
d~" ~'- ~oo) 

"0(s) < "q < ~o) 

= ~ exp I(77;>,) 

[All]  

[A121 

"~(I) = ~o(o(~, X), ~o) = oJ(1)('~;l). 

If for convenience the cumbersome iterative subscript notation is dropped then 

= - [A131 
. ,;x> ~112 d~ 

~- x:+~,)3':- x)) 

This may be integrated in closed form but the formula is complicated and some additional 
notation is required. If 

= ,~12 = (1 - z) 1/2 

o, = V[O(.~)] 

ACtr) = ~oq((2 + ~)tr)) 

B(tr) = (3 + ~or)/(2 + ~)tr) 

q(o') = (3(3 + ~tr)(1 - (~tr)) u2 

C(tr) = - 3B(tr)/q(tr) 

~(r; tr)  = ~ r  2 + 3(1 + ~tr)r  + 3(~(r 2 + 20,) 

2~r  + 3(1 + ~tr)  - q(~r) ~(r;(r) = 
2~)r + 3(1 + ~)(r) + q(tr) 

and 

then 

C~ - °" Y '<° ) /~( '~  - °';°')~ B(~'C ~('~ - °';°')'~ co°' 
~,(~;x) = \ ~ /  ~.~(~:-  0-;09/ \ ~ ( ~ -  o-;og! 

~ voJ. 8, No. 6-c [A14] 
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and 

dtr 
"J~'(tr 2 ~ 3 + ~-(tr - ,L3)) '/2 

[A15] 

The last expression which must be computed numerically was used to determine the curve of 
figure 3. 
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